INSTRUCTION MANUAL

DESCRIPTION

The TOP.DC AC/DC TIG200 is the new generation of multi functional high quality welding machine, designed and developed independently by our company. The welder adopts a microcomputer system control, dual current loop PWM control, full-bridge high frequency inverter system. It has convenient operation, stable performance, small size and high duty cycle. The welder is mainly applied to the welding of aluminum, aluminum alloy, copper, titanium, and other non-ferrous metals and stainless steel, carbon steel and other metals,

Characteristics

- ☆ High successful rate of arc start
- ☆ Stable arc without breaking arc
- ☆ Safety, efficiency
- ☆ One model, seven functions:
- **◆TIG/DC**
- **♦TIG/PULSE**
- **◆TIG/AC**
- **♦TIG/AC /PULSE**
- ◆TIG/MIX
- **◆TIG/SPOT**
- **♦**MMA

SAFETY

Arc welding can be dangerous and can cause serious and even fatal injuries

Protect yourself and others

Ensure the following safety precautions are taken:

Arc radiation Protect yourself with a hamlet fitted with filters

Rain, steam, damp Use your welding unit in a clean/dry environment, on a flat surface.

Electric shock This device must only be used with an earthed power supply. Do no touch high voltage parts. Check that the power supply is suitable for this unit

Falls Ensure the unit is placed in a stable position to prevent the machine from falling onto prople/objects

Burns Wear protective (fire-proof) clothing (cotton, overalls or jeans). Wear protective gloves and a fire-proof apron

Ensure other people keep a safe distance from the work area and do not look directly at welding arc.

protect others by installing fire-proof protection walls.

Fire risks Remove all flammable products from the work area. Do not work in presence of flammable gases

Fumes Do not inhale welding gases and fumes. Use the device in a well ventilated environment, with artificial extraction if welding indoors

Additional

Precautions

Any welding operation undertaken in.....

- rooms where there is an increased risk of electric shocks,
- poorly ventilated rooms,
- in the presence of flammable or explosive material, should always be approved by a "responsible expert", and made in presence of people trained to intervene in case of emergency. Technical protection as described in the Technical Specification CEI/IEC 62081 must be implemented. Welding in raised positions is forbidden, except in case of safety platforms use.

SPECIFICATION SPECIFICATION

SELCII ICATIO	**								
	TIG	TIG	TIG	TIG/AC	TIG	TIG	MMA		
	/DC	/PULSE	/AC	/PULSE	/MIX	/SPOT			
Rated input voltage		AC230V±15% (195V~265V) 50/60Hz							
Max input power factor			8.1	KW			10.5KW		
Rated open voltage			70)V			70V/12 V		
Load voltage V	10.2~18	10.2~18	10.4~18	10.4~18	10.4~18	10.2~18	20.2~28		
Welding current A	5~200	5~200	10~200	10~200	10~200	5~200	5~200		
Arc current A	5~200	5~200	10~200	10~200	10~200	1	1		
Base current %	1	10~90	1	10~90	1	1	1		
Crater current	5~200	5~200	10~200	10~200	10~200	1	1		
Arc force current	1	1	1	1	1	1	5~200		
Pulse Frequency Hz	1	0.1~800	1	0.1~800	1	1	1		
Pulse ratio %	1	10~90	1	10~90	1	1	1		

AC	1	1	30∼	30∼	30∼	1	1	
Frequency			200	200	200			
Hz								
AC	1	1	10~50	10~50	10~50	1	1	
Balance %								
Slop up time	0~10	0~10	0~10	0~10	0~10	1	1	
S							(*4)	
Slop down	0~10	0~10	0~10	0~10	0~10	1	7	
time S								
Pre Gas Time			0~	·10			1	
S								
Post Gas			0~	-30			1	
Time S								
Spot time S	1	1	1	1	1	0.01-5	1	
Duty Cycle at	60	60	50	50	50	60	60	
25 °C								
Insulation				F				
class								
IP class		IP21S						
Dimension		443*200*238						
mm								

4

FRONT PANEL LAYOUT

5

The front panel includes 6 button switches (welding model switch, welding function switch, arc start switch, 2T/4T switch, VRD switch, data loading and recall switch), 1 encoder switch, 33 LED indicator and 1digital display.

Welding model switch:

MMA

DC TIG

AC TIG

SPOT

Welding function switch

DC (Pulse)

Pulse(output current will change periodically based on the setted Pulse frequency and base current)

MIX (AC square wave current will be inserted a DC current to stabilize arc)

Arc start switch

LIFT TIG: Contact start

HF TIG: High frequency start without contact

2T/4T switch 2T: short welding 4T: long welding VRD switch

ON/OFF

Working (Open voltage will be limited DC 12V safe voltage)

Data loading and recall switch

Loading(20 of setting mode can be saved)

Recall

Encode switch(Setting)

The switch can be turned and pushed. Turning for choosing program and adjust data. Pushing for confirming and exit of program and data. Setting:

Start setting: Push the setting switch to start the setting, the default setting LEDs are on

Program choosing: Turn the setting switch to choose program for setting,

6

the matched LED will be on.

Adjust parameters: Push the setting again, the chosen LED shinning, then turn the setting for adjust the parameters.

Parameter confirmation: .Push the setting again for confirmation set parameters, the LED keeps on.

Exit of setting: Push the setting again, the chosen LED off, then quit the setting.

Digital display

Current

Time

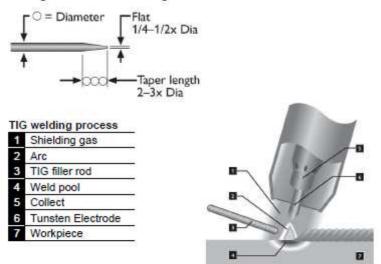
Frequency

Balance %

TIG/DC operation

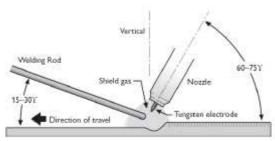
Data setting: Choose the TIG /DC model, DC welding function, LIFT/HF, 2T/4T, adjust the pre gas time, arc current, slope up time, peak current, slope down time, crater current, slope down time.

1. Pre gas time setting: In order to ensure that the workpiece and the

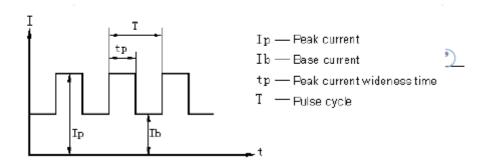

tungsten from contamination and burnout, set the pre gas time to let go argon air to push out the rest air in the torch. The pre-gas provides protection for the area where the welding pool will be formed. It also improved stability when the welding arc is created.

- **2. Arc current Setting**: Usually set the current less than the max current.
- 3. Slop up time Setting: Time needed to go from minimum current welding current.
- **4. Max Current**: It is the welding current. Set the current refer to the TIG welding table.
- **5. Slop down time Setting**: Time needed to shift from welding current to minimum current. Avoid cracks and craters at the end of welding.
- **6. Crater current Setting**: Usually set the current less than the max current.
- **7. Post gas time Setting**: In order to ensure that the workpiece and the tungsten from contamination and burnout, set the pre gas time to let go argon air keep some time. It protects the weld poil and the electrode against oxidization whilst the metal is cooling after welding.

TIG/DC WELDING TABLE


MATERIAL	WORKPIECE THICKNESS (MM)	Φ Electrode (MM)	Φ Rod (filler metal) (MM)	CURRENT(A)	Flow rate (Argon L/mn)
STAINLESS	0.6	1.0,1.6	~1.6	20~40	4
STEEL	1.0	1.0,1.6	~1.6	30~60	4 #7
(DC+)	1.6	1.6,2.4	~1.6	60~90	4
	2.4	1.6,2.4	1.6~2.4	80~120	4
	3.2	2.4,3.2	2.4~3.2	110~150	5
	4.0	2.4,3.2	2.4~3.2	130~180	5
	4.8	2.4,3.2,4.0	2.4~4.0	150~220	5
	6.4	3.2,4.0,4.8	3.2~4.8	180~250	5
DEOXIDIZE	1.0	1.6	~1.6	60~90	3~4
D COPPER	1.6	2.4	1.6~2.4	80~120	3~4
(DC+)	2.4	2.4,3.2	2.4~3.2	110~150	4
	3.2	3.2,4.0	3.2~4.8	140~200	4~5
	4.0	3.2,4.0,4.8	4.0~4.8	180~250	4~5
	4.8	4.0,4.8	4.8~6.4	250~300	5~6
	6.4	4.0,4.8,6.4	4.8~6.4	300~400	5~6
	1.0	1.6	~1.6	50~60	5~6
	1.6	1.6,2.4	~1.6	60~90	5~6
ALUMIUM	2.4	1.6,2.4	1.6~2.4	80~110	6~7
(AC)	3.2	2.4,3.2	2.4~4.0	100~140	6~7
(AC)	4.0	3.2,4.0	3.2~4.8	140~180	7~8
	4.8	3.2,4.0,4.8	4.0~6.4	170~220	7~8
	6.4	4.0,4.8	4.0~6.4	200~270	8~12
	1.0	1.6	~1.6	30~40	3~4
	1.6	1.6,2.4	1.6~2.4	40~70	4~5
Magnosi	2.4	1.6,2.4	1.6~2.4	60~90	4~5
Magnesi	3.2	1.6,2.4	2.4~3.2	75~110	5~6
um (AC)	4.0	2.4,3.2	3.2~4.0	90~120	5~6
	4.8	3.0,4.0	3.2~4.8	110~150	5~6
	6.4	3.2,4.0	4.0~4.8	130~170	6~7

To optimize the welding process, it is recommend to gind the electrode prior to welding as described in the diagram below



TIG welding techniques

The suggested electrode and welding rod angles for welding a bead on plate. The same angles are used when marking a butt weld. The torch is held 60-75° from the metal surface. This is the same as holding the torch 15-30° from the vertical. Take special note that the rod is in the shielding gas during the welding process

TIG/DC/PULSE Operation

Data setting: Choose the TIG /DC model, Pulse welding function, LIFT/HF, 2T/4T, adjust the pre gas time, arc current, slope up time, peak current, base current, slop down time, crater current, slope down time, pulse frequency, pulse ratio..

- Base current setting: Usually set in a small value as long as not break the
 arc.
- Pulse ratio setting: The ratio determines the hear input, the bigger ratio it is, the weld seam is wider and deeper and vice versa. Usually set the ration between 30%-70%.
- Pulse frequency setting: The higher frequency it is, the weld seam denser and vice versa.

TIG/DC/PULSE welding Table1

	Horbert dese wording table t							
		GAP		PULSE CO	NDITION		WELDING	FEED
MATERIAL	JOINT SHAPE	MM	PEAK CURREN	BASE CURRE	PULSE FREQU	PULSE RATIO%	SPEED CM/MIN	SPEED CM/MIN
			T (A)	NT (A)	ENCY (HZ)			
MILD		0	200	50	2.5	50	60	60
	411	1.2	150	20	1.5	45	30	60
STEEL		1.6	130	20	1	50	15	40

STAINLES S STEEL	******	0 1.2 1.6 2.0	150 150 130 130	50 20 20 20 20	3 1 0.8 0.8	50 35 30 30	80 17 10 83	40 40 40 0
COPPER	**	0 1.2 1.6	280 280 280	50 50 50	3 2 1.5	50 50 40	80 50 25	76 75
TITANIUM	##	0	200	100	1	30	25	0

SHILDING GAS: ARGON (10L/MIN); ELECTRODE: Thoriated tungsten electrode (3.2MM); FILL METAL: Φ1.2MM; LENGTH OF ARC: 2MM

TIG/DC/PULSE welding Table2

		GAP		PULSE CONDITION				FEED
MARTE RIAL	JOINT SHAPE	ММ	MAXC URR ENT (A)	BASE CURREN T (A)	PULSE FREQUE NCY(HZ)	PULSE RATIO%	SPEED CM/MIN	SPEED CM/MIN
STEEL+ MILD STEEL	12 D	1	250	50	0.8	20	10	60
STAINL ESS STEE+ MILD STEEL	<u> </u>	1	170	60	2.5	50	50	60
MILD STEEL	Tyr. Sign	1	120	50	2	50	20	30
STAINL ESS STEEL	1.6500 1.6500 1.6500 1.5500 1.5500 1.5500	1	160	50	1.5	45	8.5	60

SHILDING GAS: ARGON (10L/MIN); ELECTRODE: Thoriated tungsten

electrode (2.4MM); FILL METAL: Φ1.2MM; LENGTH OF ARC: 2-3MM

TIG/AC Operation

Data setting: Choose the TIG /AC model, , LIFT/HF , 2T/4T, adjust the pre gas time, arc current, slope up time, peak current, slope down time, crater current, slope down time, AC frequency, AC balance.

- AC frequency setting: The higher frequency it is, the arc concreted more intensive, weld seam smoother, but the sound of arc relatively shrill. Usually suggest the low AC frequency.
- AC Balance (EP ratio) setting: It is the percentage of AC negative wave against AC period. The higher it is, the weld seam smoother, but the penetration more shallow, tungsten worn easier. Usually suggest the low EP ratio

TIG/AC/Pulse Operation

Data setting: Choose the TIG /AC model, Pulse welding function, LIFT/HF, 2T/4T, adjust the pre gas time, arc current, slope up time, peak current, base current, slop down time, crater current, slope down time, Pulse frequency, Pulse Ratio, AC frequency, AC balance.

TIG/DC/PULSE welding Table2

	TIG/DC/PULSE welding Table2							
		THIC		PULSE	E CONDITION		Filler metal	
MATE	10117 0111 05	KNE	PEAK	BASE	PULSE	PULES	DIAMET	FEED
RIAL	JOINT SHAPE	SS	CURRE	CURRE	FREQUENCY	RATIO %	ER MM	SPEED
		ММ	NT A	NTA	HZ			CM/MIN
ALUM IUM		1.0 1.5 1.5 1.5 3.2 3.0	70 80 90 85 170	25 40 25 25 25 25 25	1 1 1 1 1	50 50 50 50 50 50	1.6 1.6 1.6 1.2 1.2	75 95 75 95 290 170
		6.0	220	25	1	50	1.6	250

FIRST L	8.0	180	25	1	50	1.6	
SECOND	6.0	180	25	1	50	1.6	250
	6.0	220	25	1	50	1.6	270 (12)
A	3.0	120	25	1	50	1.6	60

TIG/MIX Operation

MIX TIG: AC welding 0.3s+DC welding 0.2s.

Data setting: Choose the TIG /AC mode, MIX welding function, LIFT/HF, 2T/4T, adjust the pre gas time, arc current, slope up time, peak current,, slop down time, crater current, slope down time, AC frequency, AC balance.

Welding can refer to the TIG DC instruction.

TIG/SPOT Operation

Data setting: Choose the SPOT mode, adjust the pre gas time, slope up time(spot time), peak current,, slop down time.

In this mode, the machine can works in HF and 2T only.

MMA Operation

Data setting: Choose the MMA mode, adjust slope up time(Arc force), peak current.

Welding current setting table- Flat welding

	**Claiming C	Autrone Section	g table-1 lat	werding	
ELECTRODE	2.6	3.2	4.0	4.5	5.0
Ilmenite electrode	50~85	80~130	120~180	145~200	170~250
Titania calcium electrode	50~100	90~130	140~180	160~210	190~150
low hydrogen electrode	55~85	100~140	140~190		190~250

Welding current setting table- Vertical welding

MM	2.6	3.2	4.0	4.5	5.0
Ilmenite electrode	40~70	60~110	100~150	120~180	130~200
Titania calcium electrode	50~90	80~130	110~170	125~190	140~210
low hydrogen electrode	50~80	90~130	120~180		160~210

TROUBLE SHOOTING

Symptom	Causes
The device does not deliver any current and the yellow LED in on	Thermal protection is on
No arc exists	Torch switch is useless
	Power switch is broken
	The cable to switch is disconnected
	The cable to workpiece is disconnected
	The cable of torch is broken
Starting arc is not	Connecting tie-in is loose
good or jarless	Argon gas is not pure
	The tungsten electrode is no good fixed or its quality is no good
Surface of welding	Dunghill or grease exists on the surface of workpiece
line is no good	Argon gas is not pure
	Flux of argon gas is not enough
	Dunghill exists on the surface of tungsten electrode
Tungsten electrode	Current is too great or tungsten electrode is too thin
wastes hard	Argon gas is not pure
	Polarity error

WELDER PARTS LIST AND ASSEMBLY DIAGRAM